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1. Summary The spiking patterns of the neurons at different fMRI-identified face patches show
a hierarchical organization of selectivity for faces: neurons at the most posterior patch (ML/MF)
appear to be tuned to specific view points, AL (a more anterior patch) neurons exhibit specificity
to mirror-symmetric view points, and the most anterior patch (AM) appear to be largely view-
invariance, i.e., neurons there show specificity to individuals (Freiwald & Tsao, 2010). Here we
propose and implement a computational characterization of the macaque face patch system. Our
main hypothesis is that face processing is composed of a hierarchy of processing stages where the
goal is to “inverse render” a given image of a face to its underlying 3d shape and texture. The
model wraps and fine-tunes a convolutional neural network (CNN) within a generative vision model
of face shape and texture. We find that different components of our model captures the qualitative
properties of each of the three face patches. ML/MF and AL are captured by different layers
of the fine-tuned CNN, whereas AM is captured by the latent variables of the generative model.
This modeling exercise makes two important contributions: (1) mirror symmetry (as in the patch
AL) requires dense connectivity from the layer below and requires the agent to observe mirror-
symmetric images that belong to the same identity, (2) AM is best explained by a representation
that consists not only of latent shape and texture variables but also of the latent variables for generic
scene variables such as pose and light location, indicating that this most anterior patch should be
equivariant.
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Figure 1: General overview of the
inverse-rendering model.

Recent work on the neural basis of face processing in the
monkey inferotemporal cortex (IT) draws the picture of a sys-
tem that is richly structured (e.g., Ohayon et al., 2012; Frei-
wald et al., 2009; Freiwald & Tsao, 2010; Leopold et al., 2006).
Surely, the current picture of a hierarchical organization of the
face processing system is far from complete. But it is sufficient
to generate many potentially fruitful questions about neural
computation: for example, what is the contribution of the pose-
specificity of ML/MF to face recognition? Why and how does
mirror symmetry arise in AL? How is view-invariance achieved
at AM? We believe that a computational characterization of
the monkey face processing system can lead to progress on all
these questions by generating neurally testable predictions, or
by simply providing bidirectional computational and biological
insights for better understanding face recognition.

Here, we propose and implement a computational charac-
terization of the macaque face patch system. Our main hy-
pothesis is that face processing is composed of a hierarchy of
processing stages where the goal is to “inverse render” a given
image of a face to its underlying 3d shape and texture (Fig-
ure 1). The model wraps a convolutional neural network within
a generative vision model of face shape and texture.

The generative model treats the 3d shape and texture as well as the generic scene variables
such as light source location and head pose as latent random variables. The prior over shape and
texture is defined using the morphable face model (Blanz & Vetter, 1999), which provides a mean
face (both its shape and texture) in a part-based manner (i.e., face is represented as composed of
four parts: nose, eyes, mouth, and outline) and eigenvectors to perturb the mean face to draw new
faces. The prior distributions over light source location and head pose are selected to be uniform
over a discrete space.
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We utilize a CNN to amortize inference in this model. The CNN is trained on a very large image
corpus, which we fine-tune at different layers to predict different latent variables of the model. The
fine-tuning of the network follows the idea of Helmholtz machine: model hallucinates faces from the
prior where it knows the pose and light variables, and then fine-tunes the top convolutional layer of
the network (layer ‘conv5’) to predict as best as possible those pose and light variables. Just above
this top convolutional layer in the CNN is the first fully-connected layer (layer ‘fc6’), which we can
fine-tune to predict identity of the faces, with the idea that this will make the features at that layer
more informative of the shape and texture.

During inference, light and pose variables are set in a bottom-up manner to the values predicted
by the top convolutional layer of the network. This way of amortizing inference for light and pose
on the basis makes sense in some analogy to variational inference: we introduce decoupling between
the conditionally dependent latent variables. We expect this kind of amortizing to be generally
useful for generative models of vision. Inference over shape and texture variables require MCMC
sampling. We perform elliptical slice sampling to deal with the high dimensionality of the latents
(Kulkarni et al., 2014). We penalize samples for both the CNN features and pixels.

We test the model on a dataset of faces generated from the morphable face model. Mimicking
the FV image dataset from Freiwald & Tsao (2010), our dataset contains 7 views (left profile [LP],
left half profile [LH], straight [S], right half [RH], right profile [RP], up [U], and down [D]) of 25
identities. We compare the representational similarity matrices of the neural responses from the
data of Freiwald & Tsao (2010) (each of the ML/MF, AL, and AM while presented images from the
FV image dataset) and the representational similarity matrices arising from the representations of
the different components of our model (i.e., CNN layers conv5 and fc6, and the latent variables in
the model). Our results suggest that ML/MF is characterized well by the top convolutional layer,
whereas AL is best captured by the first fully connected layer in the network (Figure 2, the left two
columns).
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Figure 2: Side by side presentation of the neural data and the
simulations.

We capture AM patterns by
the latent representations of the
model. A representation that
only considers shape and texture
variables achieves almost full in-
variance (bottom third column,
Figure 2). However, we can ac-
count for the neural data better
only if we copy the generic but
latent scene variables to the end
of the shape and texture latents
(last column, Figure 2). This re-
sults suggest that AM neurons
consists of all the latent variables
underlying a given scene, including the generic scene variables.

Finally, what does give rise to mirror symmetry? We dissected our network in a 3 by 2 design
experiment: possible computational operations (convolution or max pooling or dense connectivity)
x kind of training data (mirror symmetric images of the same identity present or absent). We
observed mirror symmetry only at fully connected layers (i.e., dense connectivity) and when the
data contained mirror symmetric images of the same identity. Given that input is mirror symmetric
for almost all types of objects as well as scenes in real world, and given the contribution of dense
connectivity layers to increased classification accuracies in ANNs, we expect dense connectivity
relatively frequently in more anterior stages of IT.
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