All Publications
2019
“Fast and Accurate Seismic Tomography via Deep Learning”, in Deep Learning: Algorithms and Applications, SPRINGER-VERLAG, 2019. ,
CBMM Related
“To find better neural network models of human vision, find better neural network models of primate vision”, in BioRxiv, 2019. ,
CBMM Funded
“Are topographic deep convolutional neural networks better models of the ventral visual stream?”, in Conference on Cognitive Computational Neuroscience, 2019. ,
CBMM Related
“What do neurons really want? The role of semantics in cortical representations.”, in Psychology of Learning and Motivation, vol. 70, 2019. ,
CBMM Funded
“Hard choices: Children’s understanding of the cost of action selection. ”, in Cognitive Science Society, 2019.
phk_cogsci_2019_final.pdf (276.14 KB) ,
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
CBMM Funded
“People's perceptions of others’ risk preferences.”, in Cognitive Science Society, 2019.
risk_cogsci_2019_final.pdf (899.8 KB) ,
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
CBMM Funded
“Origins of the concepts cause, cost, and goal in prereaching infants.”, Cognitive Development Society. 2019.
liu_etal_lumi_cds2019_final.pdf (22.95 MB) ,
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
CBMM Funded
“Minimal images in deep neural networks: Fragile Object Recognition in Natural Images”, in International Conference on Learning Representations (ICLR), New Orleans, La, 2019. ,
CBMM Funded
“Biologically-plausible learning algorithms can scale to large datasets.”, in International Conference on Learning Representations, (ICLR 2019), 2019.
gk7779.pdf (721.53 KB) ,
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
CBMM Funded
2018
“Real-Time Readout of Large-Scale Unsorted Neural Ensemble Place Codes”, Cell Reports, vol. 25, no. 10, pp. 2635 - 2642.e5, 2018. ,
CBMM Funded
“Minimal memory for details in real life events”, Scientific Reports, vol. 8, no. 1, 2018. ,
CBMM Funded
“Learning physical parameters from dynamic scenes.”, Cognitive Psychology, vol. 104, pp. 57-82, 2018.
T-Ullman-etal_CogPsych_LearningPhysicalParametersFromDynamicScenes.pdf (3.15 MB) ,
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
CBMM Funded
“Shared gene co-expression networks in autism from induced pluripotent stem cell (iPSC) neurons”, in BioRxiv, 2018. ,
CBMM Related
CBMM Memo No.
097
“Partially Occluded Hands: A challenging new dataset for single-image hand pose estimation”. 2018.
CBMM-Memo-097.pdf (8.53 MB) ,
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
CBMM Funded
CBMM Memo No.
095
“Can Deep Neural Networks Do Image Segmentation by Understanding Insideness?”. 2018.
CBMM-Memo-095.pdf (1.96 MB) ,
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
CBMM Funded
“Mental labour”, Nature Human Behaviour, vol. 2, no. 12, pp. 899 - 908, 2018. ,
CBMM Funded
“Neural Interactions Underlying Visuomotor Associations in the Human Brain”, Cerebral Cortex, vol. 1–17, 2018. ,
CBMM Funded
“Partially Occluded Hands: A challenging new dataset for single-image hand pose estimation”, in The 14th Asian Conference on Computer Vision (ACCV 2018), 2018.
partially-occluded-hands-6.pdf (8.29 MB) ,
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
CBMM Funded
“Third-Party Preferences for Imitators in Preverbal Infants”, Open Mind, vol. 2, no. 2, pp. 61 - 71, 2018. ,
CBMM Funded
“Trading robust representations for sample complexity through self-supervised visual experience”, in Advances in Neural Information Processing Systems 31, Montreal, Canada, 2018, pp. 9640–9650.
trading-robust-representations-for-sample-complexity-through-self-supervised-visual-experience.pdf (3.32 MB)
NeurIPS2018_Poster.pdf (6.12 MB) ,
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
CBMM Memo No.
094
“Spatiotemporal interpretation features in the recognition of dynamic images”. 2018.
CBMM-Memo-094.pdf (1.21 MB)
CBMM-Memo-094-dynamic-figures.zip (1.8 MB)
fig1.ppsx (147.67 KB)
fig2.ppsx (419.72 KB)
fig4.ppsx (673.41 KB)
figS1.ppsx (587.88 KB)
figS2.ppsx (281.56 KB) ,
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
![application/zip Package icon](/modules/file/icons/package-x-generic.png)
![application/vnd.openxmlformats-officedocument.presentationml.slideshow File](/modules/file/icons/application-octet-stream.png)
![application/vnd.openxmlformats-officedocument.presentationml.slideshow File](/modules/file/icons/application-octet-stream.png)
![application/vnd.openxmlformats-officedocument.presentationml.slideshow File](/modules/file/icons/application-octet-stream.png)
![application/vnd.openxmlformats-officedocument.presentationml.slideshow File](/modules/file/icons/application-octet-stream.png)
![application/vnd.openxmlformats-officedocument.presentationml.slideshow File](/modules/file/icons/application-octet-stream.png)
CBMM Funded
CBMM Memo No.
093
“Single units in a deep neural network functionally correspond with neurons in the brain: preliminary results”. 2018.
CBMM-Memo-093.pdf (2.99 MB) ,
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
CBMM Funded
CBMM Memo No.
092
“Biologically-plausible learning algorithms can scale to large datasets”. 2018.
CBMM-Memo-092.pdf (1.31 MB) ,
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
CBMM Funded
“Cortex Is Cortex: Ubiquitous Principles Drive Face-Domain Development”, Trends in Cognitive Sciences, 2018.
1-s2.0-S1364661318302572-main.pdf (260.4 KB) ,
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
CBMM Related
“A Minimal Turing Test”, Journal of Experimental Social Psychology, vol. 79, pp. 1 - 8, 2018. ,
CBMM Related