All Publications
2020
CBMM Memo No.
112
“Implicit dynamic regularization in deep networks”. 2020.
v1.2 (2.29 MB)
v.59 Update on rank (2.43 MB) ,
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
CBMM Funded
“Minimal videos: Trade-off between spatial and temporal information in human and machine vision.”, Cognition, 2020. ,
CBMM Funded
“Function approximation by deep networks”, Communications on Pure & Applied Analysis, vol. 19, no. 8, pp. 4085 - 4095, 2020.
1534-0392_2020_8_4085.pdf (514.57 KB) ,
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
CBMM Funded
“The inferior temporal cortex is a potential cortical precursor of orthographic processing in untrained monkeys”, Nature Communications, vol. 11, no. 1, 2020.
s41467-020-17714-3.pdf (25.01 MB) ,
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
CBMM Funded
“Communicating Compositional Patterns”, Open Mind, vol. 4, pp. 25 - 39, 2020. ,
CBMM Funded
CBMM Memo No.
111
“On the Capability of Neural Networks to Generalize to Unseen Category-Pose Combinations”. 2020.
CBMM-Memo-111.pdf (9.76 MB) ,
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
CBMM Funded
CBMM Memo No.
107
“Loss landscape: SGD has a better view”. 2020.
CBMM-Memo-107.pdf (1.03 MB)
Typos and small edits, ver11 (955.08 KB)
Small edits, corrected Hessian for spurious case (337.19 KB) ,
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
CBMM Funded
“ThreeDWorld: A Platform for Interactive Multi-Modal Physical Simulation”, arXiv, 2020.
2007.04954.pdf (7.06 MB) ,
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
CBMM Funded
“ThreeDWorld (TDW): A High-Fidelity, Multi-Modal Platform for Interactive Physical Simulation”. 2020. ,
CBMM Memo No.
110
“Biologically Inspired Mechanisms for Adversarial Robustness”. 2020.
CBMM_Memo_110.pdf (3.14 MB) ,
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
CBMM Funded
CBMM Memo No.
109
“Hierarchically Local Tasks and Deep Convolutional Networks”. 2020.
CBMM_Memo_109.pdf (2.12 MB) ,
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
CBMM Funded
CBMM Memo No.
108
“For interpolating kernel machines, the minimum norm ERM solution is the most stable”. 2020.
CBMM_Memo_108.pdf (1015.14 KB)
Better bound (without inequalities!) (1.03 MB) ,
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
CBMM Funded
“Hippocampal remapping as hidden state inference”, eLife, vol. 9, 2020. ,
CBMM Funded
“XDream: Finding preferred stimuli for visual neurons using generative networks and gradient-free optimization”, PLOS Computational Biology, vol. 16, no. 6, p. e1007973, 2020.
gk7791.pdf (2.39 MB) ,
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
CBMM Funded
“Deep compositional robotic planners that follow natural language commands ”, in International Conference on Robotics and Automation (ICRA), Palais des Congrès de Paris, Paris, France, 2020. ,
CBMM Funded
CBMM Memo No.
106
“An Exit Strategy from the Covid-19 Lockdown based on Risk-sensitive Resource Allocation”. 2020.
CBMM-Memo-106.pdf (431.13 KB) ,
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
CBMM Funded
CBMM Memo No.
105
“Do Neural Networks for Segmentation Understand Insideness?”. 2020.
CBMM-Memo-105.pdf (4.63 MB)
CBMM Memo 105 v2 (July 2, 2020) (3.2 MB)
CBMM Memo 105 v3 (January 25, 2022) (8.33 MB) ,
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
CBMM Funded
“What can human minimal videos tell us about dynamic recognition models?”, in International Conference on Learning Representations (ICLR 2020), Virtual Conference, 2020.
Authors' final version (516.09 KB) ,
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
CBMM Funded
“A theory of learning to infer.”, Psychological Review, vol. 127, no. 3, pp. 412 - 441, 2020. ,
CBMM Funded
“Toward human-like object naming in artificial neural systems ”, in International Conference on Learning Representations (ICLR 2020), Bridging AI and Cognitive Science workshop, Virtual conference (due to Covid-19), 2020. ,
CBMM Funded
“Learning from multiple informants: Children’s response to epistemic bases for consensus judgments”, Journal of Experimental Child Psychology, vol. 192, p. 104759, 2020. ,
CBMM Related
“A neural network trained to predict future video frames mimics critical properties of biological neuronal responses and perception.”, Nature Machine Learning, 2020.
1805.10734.pdf (9.59 MB) ,
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
CBMM Funded
“A neural network trained for prediction mimics diverse features of biological neurons and perception”, Nature Machine Intelligence, vol. 2, no. 4, pp. 210 - 219, 2020. ,
CBMM Funded
“Emergence of Pragmatic Reasoning From Least-Effort Optimization ”, in 13th International Conference on the Evolution of Language (EvoLang) , The conference was canceled due to Covid-19, 2020. ,
CBMM Funded
CBMM Memo No.
104
“Can we Contain Covid-19 without Locking-down the Economy?”. 2020.
CBMM Memo 104 v4 (Apr. 6, 2020) (418.25 KB)
CBMM Memo 104 v3 (Apr. 1, 2020) (452.94 KB)
CBMM Memo 104 v2 (Mar. 28, 2020) (427.39 KB)
CBMM-Memo-104.pdf (425.12 KB) ,
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)
![application/pdf PDF icon](/modules/file/icons/application-pdf.png)